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A ray theory for wave propagation in a 
non-uniform medium 

By E. J. KATZ 
Mechanics Department, The Johns Hopkins University 

(Received 12 October 1962 and in revised form 12 January 1963) 

The study of wave propagation by geometrical optics is applied to a consideration 
of propagation through a non-uniform, statistically homogeneous medium. 
Following the trajectory of a phase point, two effects are examined; the retarda- 
tion of the phase point by the variable local wave speed along its trajectory and 
the further retardation and dispersion resulting from its meandering. Mean and 
mean-squared displacements are obtained to describe the retardation of the 
wave front, and the dispersion of the phase point from the incident direction. 

The theory has application as a correction to the use of geometrical optics 
wherever the latter can be employed. In  particular, it  is shown by an estimate 
of the magnitude of the pertinent parameters that an application may well be 
found in the study of the tsunami (a long ‘shallow’ ocean wave). 

1. Introduction 
The simplest wave propagates with constant vector velocity and amplitude. 

In  many physical instances we are interested in its behaviour when it passes 
through a steady non-uniform medium. If the non-uniformity is of sufficiently 
small magnitude and large length scale that the wave velocity and amplitude 
vary only slightly over one wavelength of the incident plane wave, then the 
perturbed wave may be considered to be ‘locally plane’ within the medium. 
Under such circumstances, we can transform the problem from a consideration 
of a perturbed wave equation, 

a24 
at2 - - c2(r) V2q5 = 0, 

to a study of the rays of the almost plane waves defined by the scalar wave func- 
tion +(r,t). The variable c(r) is the local speed of propagation a t  position r. 
The equations which describe the rays are (see Landau & Lifshitz 1959, equation 
(66.5), for example) 

where k is the wave vector along a ray, Ic = I kl = w/c ,  w is the wave frequency, 
which is constant on a ray, and n = k / k  is the unit vector tangent to a ray at a 
point. We will trace the propagation of a phase point along a ray when the local 
wave speed is a statisticalIy homogeneous function varying slightly throughout 
some region in space, in order to locate the mean and mean-square position of 
the wave front as a function of time. 

drldt = cn and dkldt = -IcVc, (1.2) 
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The analysis has application in a number of fields including optics, acoustics 
and shallow-water wave theory. It is the last of these which attracted the 
attention of the writer to the problem. After a general description of the pheno- 
menon has been derived and discussed, we shall enumerate the conditions which, 
when satisfied, allow an analogy between geometrical optics and shallow-water 
waves. Some estimates will be made for the propagation of tsunamis (ocean 
waves whose wavelengths are larger than the depth of the deep ocean). 

The problem of sound propagation in a turbulent medium has received wide 
attention and ray techniques have been employed. The book by Chernov (1960), 
for instance, describes a model approach to ray theory by regarding the ray 
propagation as a stochastic Markov process, permitting the use of a form of the 
Fokker-Plank equation. Other ray treatments (Ellison 1951, and Muchmore 
& Wheelon 1955, are examples) make extensive use, without formal derivation, 
of a form of equation (2.1 1 b )  to obtain such quantities as the mean-square angle 
of arrival of the ray and the intensity fluctuations. We will be concerned with the 
mean retardation in arrival time of a phase point, and the dispersion of arrival 
times about the mean. The present study also formulates the problem more 
rigorously than has been the custom and may therefore have an additional 
value in its clarification of the physical assumptions implied by these previous 
analyses. 

Wave propagation in a non-uniform medium has also been viewed in a 
Eulerian frame of reference as a wave-scattering problem. Batchelor (1957), 
among others, applies this technique to the wave equation of (1.1) as well as a 
more general case. The contrasting viewpoints can be summarized as follows. 
In  a ray theory it is the incident wave which draws our complete attention while 
the Eulerian analysis develops the scattered field generated from the incident 
wave. In  the latter, the information obtained about the incident wave field is 
indirect, inasmuch as the energy appearing in the scattered field is related back 
to an attenuation of the incident field. That the Eulerian analysis does not 
explicitly contain the ray theory to be discussed here can be seen from equation 
(14) of Batchelor. There, the logarithmic decrement of the attenuation of the 
incident wave is found to be directly proportional to an integral length scale of 
the inhomogeneity of the medium. Holding everything else constant, while 
increasing this length scale, one finds the attenuation rate increasing while the 
change in the properties of the medium within a fixed incident wavelength be- 
comes more gradual. This is accompanied by a simultaneous decrease in the 
scattering angle (Katz 1962). Thus we have an increasing attenuation rate but 
the attenuated energy is going into a scattered field which is becoming more 
difficult to distinguish from the incident field itself. It is in this region where a 
ray theory is applicable and affords direct insight to the physical phenomenon. 

2. The path of a phase point 
Along a ray, k = nwlc. When substituted into (1.2), this yields 

dr /d t  = cn 
dn /d t  = - Vc + n(n. Vc). and 
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These combine into a non-linear, second-order, differential equation for the path 

(2.3) 

Let us identify the trajectory of a particular phase point, which was at  ro 

(2 .3)  
when t = 0,  as r = X ( t , r O ) .  

For a prescribed local wave speed everywhere and a set of initial conditions, the 
position of that phase point at all subsequent times is decribed by 

where terms like Vc2 are understood to be of the gradient the scalar field c2(r) 
evaluated at r = X ( t ,  ro). 

The important function of the local properties is seen to be the square of the 
local phase speed. Separating it into a mean and a variable part, 

c2(r )  = + p ( r ) ) ,  (2.5) 
- 

we define the mean-square velocity, cg = c2, where the overbar denotes an 
ensemble average. p ( r )  is a homogeneous random function, with zero mean and 
a root-mean square value (p’) small compared to unity. It corresponds to the 
variable part of the ‘index of refraction’ of the medium. 

When p ( r )  = 0 everywhere, (2.4) yields 

aX/at = a constant vector, (2.6) 

and we have returned to the simple plane wave in the uniform medium. This 
suggests that a solution may be developed as a power series in the scaling 

(2.7) factor p’ : X ( t , r o )  = X~~~( t , ro )+X~~~( t , ro )p’+X(2~( t , r0 )p‘~+  ..., 
where the coefficients of the expansion, after averaging, will be functions of the 
normalized auto-correlation functions of p ( r ) ,  but not the absolute magnitude 
of the variation. The zero-order solution is the integral of (2.6). If we initially 
consider the waves to be travelling in the x-direction and fix attention on a phase 
point passing through the origin, then, (2.7) can be rewritten as 

X ( t )  = coti ,+X(l)(t)  + X @ ) ( t )  + ..., (2.8) 
where X(”) has replaced XCn)p’n to simplify the notation. Because the medium 
will be considered statistically homogeneous, the initial position is of no con- 
sequence and can be omitted from the argument. 

The obvious objective is to separate (2.4) into a sequence of equations with 
like dependence on p‘. Before doing this, there is one further problem to resolve. 
In  (2.4), even the quantities whose statistical properties are assumed known 
(for example, Vp) are to be evaluated along an unknown trajectory. To relate 
them to a known trajectory, we expand these terms about their values along 
X(O)(t) = cot& (the unperturbed solution) 

VpI,=x = Vpl,=xco, + [ ( X  -X@)). V] VpI,=X(o) + . .. . (2.9) 
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For small p', we can write 

V (In c2) IrEX = V(,U *,u2 + . . .) Ir=x , (2.10) 

and then expand V , U ~ ] ~ = ~ ,  etc. as in (2.9). Now, equating terms of like power, 
the first and second powers of p' yield 

(2.11) 

These equations are exact, giving the first two X(") in terms of the coefficients of 
lower order. Further equations in the sequence are not required in the present 
analysis, though their influence is considered briefly in 5 6. Substituting for 
aX(o)/at, the component equations in Cartesian co-ordinates are 

(2.11a) 

(2.11 b )  

(2.12 a) 

(2.12b) 

where the spatial derivatives are all to be evaluated along the known trajectory. 
The separation between the position of the phase point and the unperturbed 

trajectory, A(t), is given by 

A(t) = X-XCO) = X(l)+X(2)+ ...) (2.13) 

and we shall proceed to obtain m) and m) to their first, non-trivial, order of 
approximation. 

3. Wave retardation by a one-dimensional medium 
Let us begin by considering ,U = p ( z )  alone; that is, when the medium varies 

only in the incident wave direction. From (2.1) we find that the incident wave 
continues through the medium without change in direction. Its average phase 
velocity, obtained most readily from (2.1)) is 

- 
__ at = c{X,(t)} = co(l +,)a 
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Even though the medium is to be considered statistically homogeneous, the 
averaged values of p that appear in this equation are not zero since they represent 
averagesfollowing a phase point. Rather, p(x) is zero, by our definition of co. 
This point is developed in the Appendix. It indicates that the mean retardation 
A, =# 0, and we now proceed to calculate this quantity. 

- 

- 

To the first order, from (Z . l la ) ,  ._ 

xp = 0. (3.21 

For the next order, we examine the one-dimensional form of (3.12a) 

Recognizing that 
1 aP(c0t) 

ax r=Xco,(t) c0 at 

and substituting for XF), we find that the last equation reduces to 

(3.3) 

(3.4) 

Integrating once, we have the relative phase velocity to its first non-zero order, 

If we denote the auto-correlation function of p(x) by 

R(x”) = p(x’)p(x‘ +x”), 
then the mean velocitv is 

~ 

- -- - a co (I?( cot)  - $p”. ax?) 
at 

In  this one-dimensional medium, the approximation of & by X T  can be shown 
to be equally good for all times (see the Appendix). The right-hand side of (3.8) 
is strictly negative, indicating that the mean wave front is constantly being 
retarded when compared to its propagation through a uniform medium. The 
phase point lingers in regions where the phase velocity is low, so that its mean 
velocity is less than the spatial mean velocity in the medium. 

4. Wave retardation by a two-dimensional medium 
If we now let p = p(x, z) ,  the ray no longer remains parallel to the incident 

direction. The two-dimensional variations in local wave speed cause a phase 
point to meander, bending the rays towards regions where the local phase velocity 
is least. This increases the path length corresponding to a given distance in the 
incident direction and further retards the progress of the wave front. It is readily 
seen, from the symmetrical forms of (2.11 b )  and (2.12 b ) ,  that considering a third 
dimension would only add to computational difficulties rather than present 
qualitatively new phenomena. 
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As before, q) = 0,  and we look to for an approximation to Kz. From a 
comparison of (3.12a) and (3.3) we find .the additional relative displacement of 
the wave front (because of variations in the z-direction) to be given by 

we find that (4.3) becomes 

R(x, z )  is the two-dimensional auto-correlation defined in the manner of (3.7). 

bined result of (3.8) and (4.5) 
The total mean retardation of the phase velocity, for ,u = p(x ,  z ) ,  is the com- 

(4.6) 

The total mean retardation of the wave front is 

Limiting fwm 
We now wish to examine the initial, and the long-time retardation. These ranges 
are definedrelative to the appropriate integral length scale of the random medium, 
L,, where 

L, = (?)-l IOm R(x, 0)  dx. (4.8) 

When cot/Lx is sufficiently small compared to unity, the asymptotic form of 
the retardation is 

- -  
A, N Xg) 
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Since {PR(x,  0)/~x2),,, and {PR(O, z)/ax2),,, are strictly negative, we observe 
that each term contributes to retarding the progress of the wave. Initially only 
the first term need be retained and the transverse variations of the medium 
have a negligible influence. 

Of greater interest is the position of the wave front after a relatively long time 
has elapsed. For this we want the asymptotic expression for for large t. 
Unless it can be shown otherwise, the best we can assume is that X T  can 
be equated to for large but bounded times. The bound represents the 
limit beyond which we cannot ignore further terms of the series (2.13) for A,. 
Since each term in the series contains the scaling parameter p’, we will formally 
designate this upper bound as T(y’ )  and postpone a discussion of its value 
until 3 6. 

It appears that a sufficient restriction for obtaining a simple long time form 
of X?), and other quantities we shall later be interested in, is to assume that the 
already statistically homogeneous medium has a separable correlation function 

R(x ,  z )  = R(x ,  0) R(0, 2). (4.10) 

._ 

Then (4.11) 

where A, is a length scale associated with the inhomogeneity of the medium in 
a direction perpendicular to the incident direction. We can expect A, to be smaller 
than the integral length scale, L,, because of its dependence on the smaller-scale 
inhomogeneities. In  a Gaussian correlation function the two would be equal. 

Defining one additional criterion, the time to such that 

co t ‘s R(z, 0)dx 2: L, for t > to, 
P2 0 

(4.13) 

we are now prepared to estimate the wave-front retardation for large, but not 
unbounded, times. 

From (4.6)) and limiting ourselves to the class of separable correlation func- 
tions, we have 

and 

(4.14) 

The two terms contributing to the retardation of the wave front are easily recog- 
nizable. The relative importance of phase point meandering off the incident 
direction is seen to depend equally on the ratios cot/Lx and LzlAi. I n  general, 
it  will tend to dominate the result. As LxlA, -+ 0, though, we observe the return 
to the one-dimensional solution. 
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Mean square displacement 
A second measure of the propagation of the wave in the incident direction is its 
mean-square displacement about the unperturbed position. This quantity 
becomes of critical importance if one wishes to observe ah,% and gZ on a 
particular trial of any single member of the ensemble. If the root-mean square 
dispersion is large compared to the mean retardation of the wave front, then 
a critical observation on a small number of trials (or over a short part of the wave 
front) is futile, 

From (2.11 a,) we note that a first approximation for is xc,l," and we find 

or (4.15) 

For the two asymptotic time approximations we examined earlier, we now have 

(4.16) 

-. 

and A: N $cotLx2  for to < t < T(p'),  (4.17) 

where T(p ' )  is the time beyond which further terms in the expansion (2.13) are 
required. 

This expression we have found for mean-square displacement about the 
unperturbed position is very simple. It is not until we go to further terms in 
the series expansion for At (X$)X$), Xg)', etc.) that the phase point meandering 
off the incident direction and the distinction of the medium's refractive index 
along the ray to that on the unperturbed path will enter the discussion. The 
desirable calculation of (the next important term if P/p'4 9 1(1.3/,~~'~, as is 
likely) is formidable and will not be attempted here. 

- ~ _ _ _ _ _  

5. Phase point scattering in a two-dimensional medium 
We have already noted that in the two or more dimensional medium, the rays 

meander from the incident direction. To the first order, we see from (3.11 b )  that 

X g q t )  = 0. (5.1) 
__ 

Going to the next order to find an approximate expression for A,(t) we obtain, 
from (2.13b), 
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Integrating once, taking an ensemble average and making relatively obvious 
changes in variables, the.mean dispersion is given by 

- q g  [R(cot - a, - 2 )  +@(cot- a, z)]l,-=oda 

To obtain the above expression it. should be noted that the fact that the correla- 
tion function R(r) is an even function of r for a statistically homogeneous 
medium implies that aR(z, z)/a~l~,~ is an odd function of x. 

If the correlation function is invariant to reflexions about the incident direc- 
tion (R(x,  x )  = R(z, - z ) ) ,  then = 0. Thus, not only homogeneity, but also 
a statistical symmetry is required for the phase point to be found along the 
incident direction, on the average, In  general, (5.3) will describe a lateral drift 
of the wave front. 

The mean-square dispersion about the mean is obtained from (2 .11b)  and 
using our previous techniques, is found to be described by 

Limiting forms 
Re-introducing the restriction to a separable correlation function, to make use 
of (4.11), enables (5.4) to be integrated twice by parts to yield 

The short- a.nd long-time asymptotic forms are 

and 

(5.6) 

(5.6) 

(5.7) 

6. A sufficient condition for the ‘long time’ approximations to apply 
In  the two preceding sections, the exact asymptotic forms of X(z) ( t )  and X(lF(t) 

were obtained for times much longer than that required for the slowly perturbed 
plane wave to traverse a characteristic length of the medium in the incident 
direction. Under the formal restriction that the elapsed time was, in turn, 
smaller than some other time T(p‘) ,  the above statistical quantities were equated 
to the mean and mean-square dispersion of a phase point about its unperturbed 
location a t  each instant of time. A possible estimate of the minimum value of T 
can now be suggested. 

___ 
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The necessary condition for retaining only the lower-order terms from the 
basic ray equation is that these terms dominate the result. It should be sufficient, 
then, that the phase point be restricted in its meandering relative to the length 
scale in each respective direction. It is not a t  all obvious that such a stringent 
criterion is necessary. With this in mind, we estimate a value for 17 by requiring 

- 
An exception to this would be when discussing A J t )  as given by (4.14). There 
it is sufficient for only (ap'")i/L, to be small. 

7. An application: shallow water waves 
The above analysis has almost immediate application in the study of certain 

types of shallow-water waves, including the tsunami, and a brief discussion should 
prove interesting t o  those familiar with the subject. Rather than simply refer 

FIGURE 1. Shallow-water wave over a random bottom. 

to the work of Lowell (1949) and Keller (1958), who explicitly derived the eikonal 
equation for shallow-water waves over variable depths, it will better serve our 
purpose to rederive the equation for the surface elevation y = q(x,  z ,  t )  

-_ a2q V. (ghVy) = 0, 
a t2  

where y = - h(s, z )  is the randomly variable local depth and g is the local gravi- 
tational constant. Our object will be to obtain the statistical conditions implied 
by the use of (7.1) and, furthermore, the additional restrictions needed to reduce 
i t  to the form of (1.1). Of particular importance is the relative magnitude of 
the non-linear wave interaction and the wave perturbation by the random bottom. 
It shall be sufficient to derive the one-dimensional form of (7.1)) by limiting 
ourselves to systems in which the integral length scale of h in the incident direc- 
tion is at least as small as in any other direction. The result can then be 
generalized. 

Consider an incident surface wave of wave-number k and phase velocity co, 
entering a region where the depth is a statistically homogeneous function of 
position with a root-mean-square variation B' about a mean depth H ,  and a 
characteristic length scale L. By assuming only that the water is shallow 
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(kH 4 I) ,  the surface elevation of an inviscid fluid in a gravitational field is 
described by the equation of motion in the x-direction, 

U , l f U U , ,  = -9T,x 

[u(TfW,x = T J ,  
and the continuity equation, 

where u = u(x ,  t )  is the fluid particle velocity in the x-direction (see Stoker 1957, 
5 2).  The two equations combine to yield, without further approximations, 

T , I t  - 9 H T , X X  = gT , xx (T  + 4 + 9 T , x ( T  + 6 )  , x  - 2(UT . t )  , x  - (u2(r + 0) ,J ,X’ (7.4) 
By defining an average wave amplitude, T‘, we can evaluate the relative import- 
ance of each term in the above equation. 

As the only meaningful time scale in the problem is the incident wave period 
(27r/kc,), the fluid particle velocity in the y-direction, v, can be shown to be of 
the magnitude of k c o f .  Since the velocity field is irrotational, 

u = S V , / i X  N C O T ‘  __ 
H 

when kL 3 1. With this estimate, and ignoring terms whose magnitudes are 
smaller than ( T ’ / H ) ~ ,  the relative magnitude of the remaining terms of (7.4) are 

T , I t  - c: 7 ,  r x  = 97, X X T  + ST, x x e  + ST , x T ,  x + 97 , x e ,  x - 2U,XT ,t - 2UT , tx .  

8‘ - V t  - 7’ 1 (7.5) 
- ICL 7l - 8’ 

- 9‘ 
H H H H H H 
- 1 1 

Thus, the criterion for ignoring all thenon-linear termsis ?I /@’ < 1. If, in addition, 
the length scale of the bottom is long compared to the incident wavelength 
(kL  9 I), then we are left with only 

7 , u - ~ : T , x x  = S T , X X @  (7.6) 
or T,t t -C2T,xz = 0, 
where c = (gh(x))g is the local phase speed. Generalizing to the two-dimensional 
representation, one obtains the inhomogeneous wave equation of (1.1). We 
now add the restriction that the depth variation from its mean, as measured by 
O’/H, is small compared to unity and we have a total of four conditions for 
applying ray theory to shallow-water waves. (1) kI€ < 1, the shallow-water 
approximation. (2) ~ ‘ / 0 ’  4 1, suppressing the non-linear features of the total 
problem while leaving the randomness of the medium as the perturbing 
mechanism. (3) kL 1 and (4) @‘/H < 1, which combine to minimize the 
changes which occur to a wave in propagating one (surface) wavelength and 
thereby permit the use of a local plane wave concept. 

To indicate that a tsunami travelling over deep ocean may satisfy the above 
conditions, Katz (1963) calculated two one-dimensional auto-correlations for 
the depth variation in the Pacific Ocean. Statistical homogeneity was assumed. 
On the basis of the data, one may speculate that L = 500mi. and Of/H = 10-1 
are representative values. A typical tsunami may be l f t .  high and 100 miles 
long (after Cagle 1962). If we take the mean depth as 1*5mi., then we find 
that kH = 0[10-1], kL = O[lO] and T‘/Of = O[10-3]. The magnitudes of the 

23 Fluid Mech. 16 
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parameters involved, while not totally convincing, definitely suggest that the 
ray theory may be applicable. 

If we now attempt to calculate the retardation and dispersion of a tsunami 
across a 6000 mile length of ocean (roughly approximating a great circle arc to 
a line on a plane) one finds, from (4.14),  that the wave front, is retarded about a 
quarter of a wave period due to the variable depth along the incident direction, 
or several minutes. Including transverse variations in depth, and presuming the 
truncated expansion to be valid to this point, the retardation is then increased 
by an order of magnitude of (L,/h,)2 wave periods. At the present time, there is 
insufficient oceanographical data to attempt an estimate of this ratio. Again 
assuming the time bound has not been overstepped (this depends on knowing 
the magnitude of both h,/L, and LJL,, as seen in (6 .2 ) ) ,  the root-mean-square 
deviation of the wave front about its unperturbed position is of the order of a 
wave period while the root-mean-square dispersion of a phase point from the 
incident direction is 4L,.hZ wave periods. The question of whether the analysis 
can be used for predictions over as long a distance as attempted here will have to 
await further systematic observations of the topography of the ocean bed. 

This research was supported by the Mechanics Branch, U.S. Office of Naval 
Research, under Contract Nonr 248(56), and was assisted by a personal fellow- 
ship grant from the Bendix Aviation Corporation. 

I am indebted to Dr S. Corrsin for his critical assistance throughout this work, 
beginning with his initial suggestion of marking the phase point in order to trace 
the propagation of a shallow-water wave. In  addition, Dr 0. M. Phillips offered 
helpful suggestions while the work was in progress. 

Appendix 
In  this appendix, an alternative method will be given for the wave retardation 

ina one-dimensional medium. Whenp = ,LA(x), (4.14) reduces to give the mean wave 
front retardation as 

A, -#,u2cot for to =g t < T(,LA'). 
- - 

The average phase velocity can be expressed as 

We now propose to demonstrate that this approximation is equally good for 
all times sufficiently larger than to. 

For this simple medium we have noted that the average phase velocity can be 
written almost immediately as 

___ ~~ ax, ~ 

__ = C{Xz(q} = co[l + &,LA{X,(t)} - *,LAu"{X,(t)} + ...I. at 

Putting aside our previous analysis, we examine what is meant by the pseudo- 
Lagrangian ensemble averages of the moments of ,LA (,u{Xx(t)}, ,u2{X,(t)}, etc.). 

~ ~- 



A say theory f o r  wave propagation in a non-uniform medium 35 5 

-4ssuming we are permitted to replace ensemble averages by space averages, 

p(z) = lim - / i p ( x ) d z  1 
s+m s 

__ 
In  a sense, p{X$)}  is an unbiased average of ,u(x), for sufficiently long sampling 
time. In  this manner, p{XJt)} can be thought of as a biased sampling of p(x). 
The bias arises from the tagged phased point favouring regions where p(x)  is 
negative, where i t  travels more slowly, as contrasted with the positive regions 
(equally probable in x )  through which it ‘speeds ’. Therefore we might anticipate 
&Xz(t)],  for instance, to be monotonically decreasing with time (monotonic, 
because longer time permits greater biasing). When the wave has traversed 
several characteristic lengths of the medium, an asymptotic value is approached. 

where c(x)-’ is the weight given p(x) for the increment of path length dx at x. 
Replacing c ( x )  by c,(l +,&))a, and expanding (1 +,u(x))-* for I,u(x)l 4 1, we find 

where the additional terms are, in many physical instances, of magnitude ($)2. 

To evaluate the asymptotic values of the higher moments of p{X,(t)}  we extend 
the biased sampling average 

._ .~ ~ocnL/c”(z) [c(x)]-l dx 
/Ln(Xz(t)j = -- 

/;t[c(z)]-’ dx ’ 
and one calculates that 

_ _ _ -  
,u2{X,(t)j --f p2 + . . . as t + co. 

For p’ < 1, this is as much as we need and, after substitution, (3.1) becomes 

which is (A l), our previous result. Because the right-hand side will never be a 
function of time no matter how many terms one calculates, there is no need for 
the upper bound on t in this particular case. Thus, for t B to and p’ 4 1, (4.14) is 
a good approximation as long as the incident wave has not been appreciably 
scattered transversely. 

23-2 
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[Note added in proof: A study by J. B. Keller (Proc. Symp. Appl. Math. 
13 (1962)’ Amer. Math. Soc.) proposes a ray theory which resembles the one 
discussed here. The principal difference is that in Reller’s work the ray is 
described as a function of arc-length along the ray, whereas in the present 
work it  is a function of time. The former formulation omits the effect of 
variable wave speed along the ray path, which we have shown to diminish the 
arc-length travelled relative to that travelled in a uniform medium.] 


